
Webology (ISSN: 1735-188X)

Volume 18, Number 4, 2021

1417 http://www.webology.org

Discovering Frequent Itemset From Long Transactions

Using OMIT Algorithm In Big Data

S Thirumaran1 and R Nagarajan2

1Department of Computer Applications, Alagappa Government Arts College, Karaikudi, India.

2Department of Computer and Information Science, Annamalai University, India.

Abstract

The discovery of the frequent itemsets from large datasets and long transaction dataset in big data

is a tedious task and it requires enormous amount of power and memory to drive and unearth the

underlying patterns. The idea of utilizing the map reduce will considerably reduce the complexity

of huge number of candidate generation and more importantly decreases the execution time and

memory footprints but in some data sets with very long transactions the computation overhead

becomes a major head ache and this paper proposes a new algorithm named as OMIT (omitted

items in transaction to find frequent itemset) to evade the overheads using omitted items to

discover the frequent itemsets at a rapid pace with minimum memory usage and with very less

candidate generation. The proposed algorithm was compared with few existing algorithms and

from the experimental results the proposed algorithm outscored the existing algorithm by a good

margin.

Keywords: Apriori algorithm, Big data, Frequent itemsets, Map reduce, OMIT algorithm.

1. Introduction

The method of finding the frequent itemset from large data is a humongous task as it involves lots

of memory usage, run time and system capacity to unearth the desired output and as the internet

grows rapidly the data collected from it also grows rapidly and this sudden surge in the data needs

to be tapped with good technique to alleviate the major overheads caused during the discovery of

frequent itemsets (Han et al., 2011).

A large portion of the current data mining algorithms purely depend on Apriori approach which is

a primitive approach in finding the frequent itemsets (Agrawal et al., 1996). The Apriori algorithm

developed by Srikanth Agarwal utilizes a bottom up, breadth first search approach that specifies

each and every frequent itemset present in the raw data. The algorithm starts by examining all

transactional data in the input data base and registering the 1-item frequent items which complies

the minimum support criteria. Then, the frequent candidate 2-itemsets is found from the 1–itemset.

Webology (ISSN: 1735-188X)

Volume 18, Number 4, 2021

1418 http://www.webology.org

The Apriori set the establishment for plenty of calculations that rely intensely upon the Apriori

property and use the Apriori generate join strategy to generate candidate set (Agrawal et al., 1996).

The Apriori property expresses that "All non-empty subsets of a frequent itemset should likewise

be frequent". It defines that if an item is infrequent, then all the items associated with that item will

be infrequent.

Apriori-based algorithms cited in (Brin et al., 1997; Lin and Dunham, 1998; Park et al., 1995)

performance exceedingly well with sparse datasets and short transactions. But when it comes to

dense datasets where long transactions are present, the algorithm’s performance decreased and

struggled to complete the execution in most of the databases. These dwindle in the overall

performance is principally due to the following reason: All these algorithms that operates like

Apriori iterates repeatedly equal to the length of the longest transaction present in the database.

Most of the previous FIM research work utilizes the traditional horizontal transactional database

format and uses Apriori approach. But many vertical mining algorithms instead of horizontal

mining was proposed (Zaki, 2000; Zaki and Hsiao, 2000). In vertical approach each and every

item in the input database is closely related with its corresponding ID. Generally, the algorithms

that utilized the vertical approach showed big improvement with respect to the performance and

outperformed horizontal mining methods. Instead of using complex manipulations in generating

the candidates and counting, the vertical mining method uses the ID set intersection to ease the

complexity arises due to the computations.

In this paper, a new algorithm named OMIT is proposed which finds the omitted items present in

the transactional rows of the database, which is usually lesser than the actual items present in the

transactional rows. This omitted item approach reduces the memory usage and reduces the

execution time considerably.

2. Preliminaries

Let us consider “I” be a set of items present in the transactional row, and “D” is the input database

with n number of transactions, where each and every transaction present in D has a unique

identifier (TID) and contains a set of items. A set MI is also called an itemset, and a set N  D

is called a tidset. An itemset with k items is called k -itemset. For brevity an itemset {M, N, O} is

written as MNO. The support of an itemset M, denoted Sup (M), is the number of transactional

rows in which it occurs as a subset. An itemset is frequent if its support is more than or equal to a

user-specified minimum support (min_sup) value, i.e., if Sup(M)  min_sup.

Min_sup =
Frequency (M,N)

N
 (1)

where n is the total number of transactional rows in the database.

Table 1 Sample transaction database

Webology (ISSN: 1735-188X)

Volume 18, Number 4, 2021

1419 http://www.webology.org

TID Transactions

T1 M1,M2,M4,M5

T2 M2,M3,M5

T3 M1,M2,M4,M5

T4 M1,M2,M3,M5

T5 M1,M2,M3,M4,M5

T6 M2,M3,M4

Consider an input sample database as shown in Table 1. There are five distinct items, DItems =

{M1, M2, M3, M4, M5} and six transactional rows Trow = {T1,T2,T3,T4,T5, T6}.

2.1 Find Distinct Items

The procedure FindDistItem() is used to find the distinct items present in the data base. This

procedure first scans the input DB and then fetches each and every item present in the DB. The

item fetched is compared with the array element present in the array A[] and if the item is not

present in the array, then that item is stored in the array A[]. If the item fetched is present, then

that item is ignored and the next element in the row is fetched. This process is the first process in

the proposed OMIT algorithm. The distinct items found by this procedure are DItems = {M1, M2,

M3, M4, M5}. Figure 1 shows the procedures to find distinct items from transactional DB.

2.2 Procedure to Find Omitted Items

Figure 2 shows the procedures to find omitted items from transactional DB. The working of the

EstimateOmitted procedure is shown in Figure 3. From Figure 3, it is quite clear that the average

length of the DB is reduced considerably.

Find Dist Item(Database D)

INPUT: Transactional Database D

OUTPUT: Distinct Items Di ->Array

BEGIN:

1. Load and Scan the input database D

2. Initialize an empty A[]

3.  Transaction Row rD do begin

4.  Item I  r do begin

5. If [I Not in A[]] then do

6. Store the Item I in A[]

7. Close IF

8. Close For

9. Close For

10. Return A[]

Webology (ISSN: 1735-188X)

Volume 18, Number 4, 2021

1420 http://www.webology.org

END PROCEDURE

Figure 1 Procedure to Find Distinct Items from Transactional DB

Estimate Omitted (Database B, Distinct Items Di)

INPUT: Transactional Database D, Distinct Items Di

OUTPUT: Omitted Items in each transactional row → Out

BEGIN:

1. Load and scan the input database D

2. Row rD do begin

3. Fetch one Row r

4. Find the Set Difference Diff=Di\ r

5. Store Diff in Out along with its ID

6. End For

7. Return Out

END PROCEDURE

Figure 2 Procedure to Find Omitted Items from Transactional DB

Figure 3 Working of EstimateOmitted Procedure

The database is reconverted populated with the omitted items as shown in Table 2 and here the

average length is calculated to prove the effectiveness of the proposed algorithm OMIT. Figure 4

shows the procedures to convert omitted DB into binary table.

Table 2 Reconverted Sample Input Database

TID Omitted Transactions

T1 M3

T2 M1,M4

{M1,M2,M3,M4,M5} \ {M1,M2,M4,M5}

{M1,M2,M3,M4,M5} \ {M2,M3,M5}

{M1,M2,M3,M4,M5} \ {M1,M2,M4,M5}

{M1,M2,M3,M4,M5} \ {M1,M2,M3,M5}

{M1,M2,M3,M4,M5} \ {M1,M2,M3,M4,M5}

{M1,M2,M3,M4,M5} \ {M2,M3,M4}

T1 M3

T2 M1, M4

T3 M3

T4 M4

T5

T6 M1, M5

Webology (ISSN: 1735-188X)

Volume 18, Number 4, 2021

1421 http://www.webology.org

T3 M3

T4 M4

T5

T6 M1,M5

The average length of the original database is calculated as follows,

Total number of items = 23.

Average length = 23/total number of rows = 23/6 = 3.8

The average length of the reconverted database is calculated as follows,

Total number of items = 7.

Average length = 7/total number of rows = 7/6 = 1.1

The average length is reduced considerably and for very long and dense databases this method will

completely minimize the overheads related to time and memory. Now the omitted item database

is converted into binary table as shown in the following procedure.

Binary Conversion (Omited OD, Distinct Items Di)

INPUT: Omitted Database OD, Distinct Items Di

OUTPUT: Binary table →B

BEGIN:

1. Load and Scan the Omitted database OD

2. Fetch each Row rin OD

3. Compare Distinct Items Di with Row r

4. IF [Di is present in r] then

5. Mark that element with “1” →B

6. Else

7. Mark that element with “0”→ B

8. Close IF

9. Return Binary table B

END PROCEDURE

Figure 4 Procedure to Convert Omitted DB into Binary Table

Webology (ISSN: 1735-188X)

Volume 18, Number 4, 2021

1422 http://www.webology.org

Figure 5 Binary Table B for Table 2

Table 2 is considered and each item is fetched and compared with the distinct items and if the item

is present, ONE is marked in the binary table else ZERO is marked in the binary table as shown in

Figure 5.

COMPUTE(Distinct Di, Binary table B, MinSup mp)

INPUT: Distinct Item Di, Binary Table B, min_sup mp

OUTPUT: Frequent Itemsets

1. Load the distinct Items Di

2. Discover candidates → C

3. While [C ≠ Empty] do

4. Fetch the binary values of C from B

5. Add them and store →R

6. Find the number of Zeroes in R →NoZ

7. IF (NoZ> = m)

8. STORE →RESULT

9. Proceed to the superset and COMPUTE

10. Else

11. REMOVE that ITEM

12. Close IF

13. Close While

 Return RESULT

END PROCEDURE

Figure 6 Procedure COMPUTE Present in OMIT Algorithm

3. Proposed OMIT Algorithm

Webology (ISSN: 1735-188X)

Volume 18, Number 4, 2021

1423 http://www.webology.org

Figure 6 shows the procedures of COMPUTE present in OMIT algorithm. Let us consider the user

defined minimum support be 3 and let us evaluate items M1 and M2 initially as shown in Figure

7.

The binary values of M1 and M2 are initially fet6ched and simple addition is performed to find

whether it is frequent or not as also shown in Figure 7.

Figure 7 First Level Addition Performed on Items M1 and M2

Figure 8 Second Level Addition Performed on Items M1, M2 and M3

The number of zeroes is found and it is equal to 4 and the count of M1 and M2 is equal to 4 which

is greater than the user defined minimum support value 3. This {M1, M2} is a frequent itemset.

Now the super set of the M1, M2 is computed as shown in Figure 8.

Now the number of zeroes is computed and it is found to be 2. i.e., the count value of the 3-itemset

{M1, M2, M3} = 2 which is less than 3. Therefore, the itemset {M1, M2, M3} is pruned away

from the calculation and no computations are carried out further. Table 3 shows the final frequent

itemset result.

3.1 OMIT Algorithm

The proposed algorithm OMIT is shown in the following Figure 9 and all the sub-procedures are

included in the algorithm and this algorithm is compared with some existing algorithms to check

the performance regarding time and memory.

Webology (ISSN: 1735-188X)

Volume 18, Number 4, 2021

1424 http://www.webology.org

Table 3 Final Frequent Itemset Result

3.2 Advantages of Omitted Item Approach

A thorough experiment and analysis was conducted to prove the advantage of utilizing the omitted

items approach and plethora of benchmarked databases are procured and executed to find the

omitted items. The sample database shown in table 1 has an average length of 3.8. But the average

length of the omitted item database is reduced to 1.1. The original database size is reduced more

than 3 times and hence the memory usage and time taken for execution also reduces. The

benchmarked databases that are used in the experiment to prove the effectiveness of the reduction

in the database size is shown in Table 4.

OMIT(database D, minimum support mp)

INPUT: Transaction database D, min_sup mp

OUTPUT: Frequent Itemsets

1. Sort the input data D

2. Di[]=FindDistItem(D)

3. OD[] = EstimateOmitted(D, Di)

SNO ITEMSET SUPPORT VALUE

1 M1 4

2 M2 6

3 M3 4

4 M4 4

5 M5 5

6 M1,M2 4

7 M1,M4 3

8 M1,M5 4

9 M2,M3 4

10 M2,M4 4

11 M2,M5 5

12 M3,M5 3

13 M4,M5 3

14 M1,M2,M4 3

15 M1,M2,M5 3

16 M1,M3,M5 3

17 M2,M3,M5 3

18 M2,M4,M5 3

19 M1,M2,M4,M5 3

Webology (ISSN: 1735-188X)

Volume 18, Number 4, 2021

1425 http://www.webology.org

4. B= BinaryConversion(OD, Di)

5. Permute candidates→CC

6. Freq[]=COMPUTE(Di, B, mp)

END Algorithm

Figure 9 Proposed OMIT Algorithm

Table 4 Tidset Size and Omitted Item Size Comparison

Database

Name

Min_Sup

value

Avg Tidset Size

value

Avg. Omitted item size

value

Chess 0.6% 1623 38

Mushroom 6% 678 77

Connect 72% 48962 136

Pumsb 30% 15819 586

From Table 4, it is quite obvious that the omitted item size database decreases considerably as the

average size of the omitted database reduces to a great extent. The proposed approach is more

effective in discovering the frequent itemsets for databases with long transactions and for databases

with dense items.

4. Experimental Results

The proposed OMIT algorithm was implemented using java programming language on a personal

computer with 2.66 GHz Intel Core I5, 4GB RAM running on windows 10. All the benchmarked

databases are downloaded from the UCI Database Repository. The proposed OMIT algorithm was

compared with Apriori, vertical format Bi-Eclat algorithms, DBV algorithms and the results are

showcased in the Figure 10 to 14.

Figure 10 TIDSET Comparison with Omitted Item Size

Webology (ISSN: 1735-188X)

Volume 18, Number 4, 2021

1426 http://www.webology.org

Figure 11 Runtime Comparison for Connect database

Figure 12 Memory Usage Comparison for Connect Database

Figure 13 Run Time Comparison for Mushroom Database

Webology (ISSN: 1735-188X)

Volume 18, Number 4, 2021

1427 http://www.webology.org

Figure 14 Memory Usage Comparison for Mushroom Database

From the Figure 10 to 14, it is quite obvious that the proposed OMIT algorithm outscored the other

three algorithms by a good margin with respect to speed and memory usage and this is mainly

because of reconstruction of the original database with the omitted items.

5. Conclusions

The proposed OMIT algorithm performed extremely well with the benchmarked databases and

proved to be a powerful tool to deal with very dense databases with long transactions. The OMIT

algorithm can be combined with map reduce to speed up the entire process further and the database

size can be further reduced by compressing the database to increase the speed of the execution by

a large volume. The proposed OMIT algorithm quite clearly showcased that the omitted item

approach employed cuts down the size of memory required to store the candidates since the size

of the database is reduced the execution time or the run time required also reduces considerably.

References

[1] Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I., others, 1996. Fast

discovery of association rules. Adv. Knowl. Discov. Data Min. 12, 307–328.

[2] Brin, S., Motwani, R., Ullman, J.D., Tsur, S., 1997. Dynamic itemset counting and implication

rules for market basket data, in: Proceedings of the 1997 ACM SIGMOD International

Conference on Management of Data. pp. 255–264.

[3] Han, J., Pei, J., Kamber, M., 2011. Data mining: concepts and techniques. Elsevier.

[4] Lin, J.-L., Dunham, M.H., 1998. Mining association rules: Anti-skew algorithms, in:

Proceedings 14th International Conference on Data Engineering. IEEE, pp. 486–493.

[5] Park, J.S., Chen, M.-S., Yu, P.S., 1995. An effective hash-based algorithm for mining

association rules. Acm Sigmod Rec. 24, 175–186.

[6] Zaki, M.J., 2000. Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng.

12, 372–390.

Webology (ISSN: 1735-188X)

Volume 18, Number 4, 2021

1428 http://www.webology.org

[7] Zaki, M.J., Hsiao, C.-J., 2000. An efficient algorithm for closed association rule mining, in:

6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp.

34–43.

